IBM量子云的16个量子比特全被纠缠起来了!


2016年5月,IBM宣布了5个量子比特量子云平台上线,吸引了全世界的目光。很快就有研究组基于这个平台开始做实验,并发表论文。一年后,IBM的量子云平台升级,16量子比特的芯片上线。16量子比特的平台,比起5比特的平台那可是复杂了不少,很多有趣是想法都可以在上面验证了。可要是想访问16比特的芯片,还是得拿到内部的邀请权限才行。

2017年暑假,碰到了曾蓓教授,聊起这个事情,决定一方面我们自己研究搭建一个量子云平台,另外一方面,想办法拿到IBM的量子云平台的访问权限,在上面测试和做研究。她原来在IBM的量子信息实验室工作过,跟那边的人很熟,所以很快就拿到了一个访问邀请码。正好,我组里有位大二的学生王远皓没有确定研究课题,我们与他讨论之后,就确定他在IBM的量子云上做测试,研究题目定为在上面制备多体量子纠缠态。要用量子云芯片做量子计算,我们首先想要了解的就是其计算能力有多大。用量子云平台能制备的多体量子纠缠态的大小,直接就反映了其计算能力。经曾蓓邀请,中物院研究生院的李颖副研究员也加入了这个项目,他是多体纠缠与容错量子计算理论方面的专家。

考虑到IBM量子云的两比特逻辑门保真度不算太高,只有95%左右,我们选择的是图态(graph state)。这种态有很好的特性,局域的测量只会影响图上与之相连的最近邻的量子比特跟它的纠缠。要把N个比特的图态分解为完全可分离态,至少需要N/2个测量操作。理论上而言,图态对局域的噪声和测量都是比较鲁棒的,有望做出较大的量子纠缠态。量子云上能制备的多体纠缠态的大小,实际上也就展示了其量子特性,以及计算的能力。

王远皓的学习能力非常强,在解决了访问不畅等小问题之后,他很快就上手做测试了。几周之后,他告诉我们,已经确认了4个量子比特的多体纠缠,但是做出6比特量子纠缠后,无法判定是否是多体纠缠态。利用量子云平台,他可以对所制备的多体纠缠态进行全息投影测量,获得其状态的密度矩阵。在根据密度矩阵与目标态之间的投影得到保真度,从而可以判定制备出来的态是否是多体纠缠态。这种办法的问题在于,保真度随着多体纠缠态的量子比特数目增加而急剧下降,同时对多个比特进行投影测量所需要耗费的时间等资源也是在急剧上升的。此方法当比特数达到6个时就失效了。

带着这个问题,我们去找李颖讨论了一次。李颖建议我们基于图态的特性,对所制备的态只考虑最近邻的4个量子比特的约化密度矩阵。如果对这四个比特的两端的两个量子比特进行局域操作与测量之后,所得到了中间两体密度矩阵是纠缠的,那么就意味着原来的图态是不会从这二者之间分开的。当遍历所有的可能,排除掉所有的可分态情况之后,我们就可以证明所制备的图态是具有多体量子纠缠的。这个办法是多体量子纠缠存在的充分条件,所需要的测量数目只是跟多体量子纠缠态的量子比特数成线性增长,因此是很高效的。

确定了更高效的测量办法后,王远皓的进展更是神速,在短短的两三个星期里面,他证明了8、10和12量子比特的多体纠缠。实际上当12比特的纠缠态被验证之后,我们已经确立了超导量子电路系统中多体量子纠缠态的新的记录。在这之前的记录是10个超导量子比特:他们用的办法是通过超导腔诱导出比特之间的集体相互作用,一步制备出多体GHZ纠缠态。我们的办法是基于通用量子逻辑门电路的,具备更大的普适性,且由于逻辑门的误差会累积,因此制备大数目的量子纠缠态是不容易的事情。

我们的方法体现出了很好的可扩展性,是继续去尝试做更大的量子纠缠态,还是开始写论文呢?既然已经创造了新的记录,而且也接近学期末,王远皓要准备期末考试了,我们决定赶紧写论文。等他考完几门,论文也写得差不多了。王远皓还是心有不甘,利用准备考试的间隙,继续在量子云上尝试制备14与16比特的量子纠缠,结果惊喜地发现,14与16比特也是可以制备到多体量子纠缠态的。到此为止,我们实现了IBM云计算服务器上所有16个量子比特的全量子纠缠,这不仅仅是超导量子计算系统中的新记录,也打破了离子阱系统所创造的14个量子比特纠缠的记录和光子平台上的10光子量子纠缠的记录。

最近,IBM又发布了20超导量子比特的云服务,公布了50比特超导量子芯片,并把16比特的服务完全公开了。这意味着,在这个平台上会有越来越多有意思的问题值得探索。我们期待能够做出新的有趣发现。